NOTA APPLICATIVA

IL METODO DEL PICCO PONDERATO NELLA VALUTAZIONE DELL'ESPOSIZIONE UMANA AI CAMPI ELETTRICI E MAGNETICI DI FREQUENZA BASSA E INTERMEDIA

Daniele Andreuccetti e Nicola Zoppetti

IFAC-CNR

Istituto di Fisica Applicata "Nello Carrara" del Consiglio Nazionale delle Ricerche via Madonna del Piano, 10 – 50019 Sesto Fiorentino (FI)

1. Ambito di applicazione

Questa nota applicativa riguarda la valutazione dell'esposizione umana ai campi elettrici e magnetici aventi una forma d'onda non sinusoidale (o "complessa") e un contenuto spettrale che interessa le regioni normative delle frequenze basse (fino a 100 kHz) e intermedie (da 100 kHz a 10 MHz). Essa non si applica però ai problemi di esposizione della popolazione ai campi elettrici e magnetici emessi dagli elettrodotti poiché questi, in Italia, sono soggetti ad una disciplina specifica [1], che non contempla le forme d'onda complesse. La nota si applica pertanto alle esposizioni della popolazione a tutte le sorgenti (con esclusione degli elettrodotti) e alle esposizioni occupazionali a tutte le sorgenti (elettrodotti compresi), che generano campi elettrici e magnetici con forma d'onda complessa e contenuto spettrale significativo al di sotto dei 10 MHz.

Queste categorie di esposizioni e di sorgenti sono disciplinate dalle prescrizioni normative emanate dalla comunità europea [2,3] che, a loro volta, hanno come riferimento scientifico le linee guida pubblicate dall'ICNIRP (International Commission for Non-Ionizing Radiation Protection). In particolare, ci interessano i valori limite e le disposizioni che le linee guida ICNIRP adottano per la prevenzione degli effetti di stimolazione del sistema nervoso imputabili ai campi elettromagnetici.

2. Origine del metodo del picco ponderato

2.1 L'esposizione a sorgenti multiple nelle linee guida IRPA-INIRC

Le linee guida internazionali sulla protezione dalle esposizioni ai campi elettromagnetici sono nate avendo in mente i servizi di telecomunicazione analogica e altre applicazioni sostanzialmente a banda stretta, come per esempio le emissioni dei radar e dei radiofari. Le prime normative erano pertanto basate sul presupposto implicito che ad ogni sorgente potesse essere associata una precisa frequenza di emissione e furono quindi formulate "nel dominio della frequenza": per ogni frequenza veniva specificato un limite massimo da non superare (differenziato tra esposizioni occupazionali ed esposizioni della popolazione) per il campo elettrico, il campo magnetico e la densità di potenza.

La prima manifestazione di attenzione per le esposizioni che coinvolgessero forme d'onda non sinusoidali si ebbe con le linee guida rilasciate dall'IRPA-INIRC (International Radiation Protection Association – International Non-Ionizing Radiation Committee, un comitato precursore dell'ICNIRP) nel 1988 [4]. Esse includevano infatti anche le indicazioni per affrontare l'"esposizione da molteplici sorgenti", riassumbili (per quanto di interesse in questo documento) come segue: nel caso in cui un soggetto sia esposto contemporaneamente ai contributi generati da N sorgenti sinusoidali distinte ed indipendenti, numerate dall'indice "i", tutte operanti a frequenze inferiori a 10 MHz, per valutare l'esposizione nel suo complesso occorre calcolare, per ogni sorgente, il rapporto tra l'ampiezza efficace " A_i " del campo emesso (elettrico o magnetico) e il pertinente valore limite di esposizione " $L(f_i)$ " preso alla frequenza " f_i " di lavoro della sorgente stessa. La

somma di questi rapporti costituisce un **indice di esposizione** che indicheremo col simbolo I_{MS} e che deve essere inferiore all'unità per garantire il rispetto dei limiti. In formule:

$$I_{MS} = \sum_{i=1}^{N} \frac{A_i}{L(f_i)} \le 1 \tag{1}$$

La formula (1) deve comprendere solo i contributi con frequenza f_i minore di 10 MHz e deve valere separatamente per il campo elettrico e per il campo magnetico.

Questa impostazione era conseguente e funzionale all'approccio misuristico prevalente all'epoca che, nel caso della presenza di più sorgenti, prevedeva l'utilizzo di due possibili soluzioni: la misura dell'intensità del contributo di ogni singola sorgente presa singolarmente (spengendo tutte le altre), rilevato con una sonda a banda larga, oppure la misura selettiva dei vari contributi (tutti presenti contemporaneamente), effettuata con un analizzatore di spettro o un radioricevitore. Nessuna delle due tecniche permette di determinare le fasi dei contributi, ma queste non sono necessarie per l'applicazione della fomula (1) ed anzi hanno poco significato, se le sorgenti sono effettivamente indipendenti.

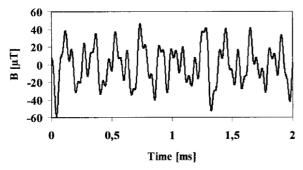
2.2 L'esposizione a campi a frequenza multipla nelle linee guida ICNIRP

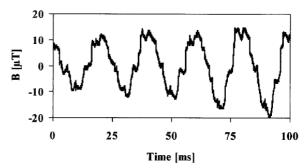
Con la pubblicazione delle linee guida del 1998 [5], l'ICNIRP ha riproposto l'approccio basato sulla formula (1), applicandolo però alla "esposizione simultanea a campi di molteplici frequenze" anziché alla "esposizione da molteplici sorgenti". Il cambiamento di denominazione rivela l'intenzione di proporne l'applicazione anche per trattare le situazioni in cui un'unica sorgente emette un segnale non sinusoidale comprendente molte frequenze, ovvero una **forma d'onda complessa**¹. Nel seguito chiameremo "metodo standard" questo approccio alla valutazione dell'esposizione (di qui il pedice "MS" adottato nel simbolo nella formula (1)).

Col metodo standard, l'ICNIRP ha quindi introdotto un principio fondamentale, in base al quale le sorgenti che emettono segnali modulati o distorti non possono essere valutate semplicemente sulla base del valore efficace complessivo emesso e del valore limite alla frequenza portante o alla frequenza nominale di lavoro (come era prassi fare fino a quel momento), ma occorre invece pesare in modo opportuno, in funzione dei valori limite alle rispettive frequenze, le ampiezze delle singole componenti spettrali che compongono il segnale e poi combinare insieme i termini pesati così ottenuti.

2.3 Lo statement ICNIRP 2003

Negli anni successivi al 1998, l'applicazione del *metodo standard* ha fatto emergere alcune difficoltà ed incongruenze, che l'ICNIRP ha cercato di chiarire e risolvere con un apposito documento, specifico per le forme d'onda complesse a bassa frequenza: il cosiddetto *statement* del 2003 [6]. In esso il problema viene affrontato partendo da una sommaria classificazione delle forme d'onda complesse in quattro tipologie diverse:


- forme d'onda a impulso rettangolare singolo;
- forme d'onda a raffica sinusoidale ("burst");
- forme d'onda non-coerenti;
- forme d'onda coerenti.


¹ Nelle linee guida ICNIRP del 1998 vi è un'altra importante differenza rispetto alle precedenti linee guida IRPA-INIRC: il valore limite da inserire a denominatore nella formula (1) non è sempre il valore che compare nelle tabelle dei livelli di riferimento, bensì è il limite che attiene **ai soli effetti di stimolazione nervosa**. Per frequenze maggiori di 100 kHz esso risulta *maggiore* del limite per gli effetti termici, che pertanto prevale e viene riportato nelle tabelle.

Le prime due, nello *statement*, vengono trattate sommariamente, con approcci specifici (se ne mostreranno più avanti alcuni esempi). Sulle altre due, esso si sofferma più diffusamente, mettendo in evidenza l'opportunità di distinguerle e trattarle in modo differente.

2.4 Le forme d'onda non-coerenti

Le forme d'onda "non-coerenti" vengono definite nello *statement* come quelle forme d'onda costituite da "molteplici segnali sinusoidali, dove le fasi o le frequenze delle componenti armoniche variano casualmente in funzione del tempo". Ne risulta, nel dominio del tempo, un segnale dall'aspetto caotico, in alcuni casi simile al rumore, nel quale non è possibile riconoscere alcuna evidente regolarità. In **Figura 1** ne è illustrato un esempio, tratto dallo *statement*. Una forma d'onda di questo tipo può essere generata sia dalla sovrapposizione di contributi di più sorgenti distinte e indipendenti, sia da una sorgente apparentemente singola, ma che contiene al suo interno più subassiemi che emettono segnali a diverse frequenze e/o scorrelati in fase, sia infine da una sorgente singola intrinsecamente caotica (come per esempio lo scintillio delle spazzole di un motore elettrico). L'esposizione a una forma d'onda *non-coerente* è di fatto equivalente alla "esposizione da molteplici sorgenti" delle linee guida IRPA-INIRC del 1988 e alla "esposizione simultanea a campi di molteplici frequenze" delle linee guida ICNIRP del 1998.

Figura 1: esempio di forma d'onda complessa di tipo *non-coerente* (da [6], figura 2b).

Figura 2: esempio di forma d'onda complessa di tipo *coerente* (da [6], figura 2c).

Di conseguenza, lo *statement* ICNIRP-2003 conferma per queste forme d'onda la modalità di valutazione basata sulla formula (1), cioè il *metodo standard*; non fa differenza, nei fatti, se le varie componenti spettrali del segnale a cui si è esposti sono generate da più sorgenti indipendenti o da un'unica sorgente, purché siano scorrelate tra di loro.

L'unica differenza rilevante è sul piano operativo: per misurare le ampiezze delle componenti spettrali di una forma d'onda complessa di tipo *non-coerente* generata da una singola sorgente, occorrerà necessariamente utilizzare uno strumento selettivo (analizzatore di spettro o un radioricevitore), poiché con tutta probabilità non sarà possibile attivare una sola componente per volta per misurarla con una sonda a banda larga.

In alternativa, è possibile procedere al campionamento della forma d'onda da analizzare, per poi determinare le ampiezze dei suoi contributi spettrali per mezzo della trasformata di Fourier eseguita per via numerica. Si tratta di un approccio diffuso ed efficace, ma che presenta difficoltà da non trascurare, soprattutto nel caso delle forme d'onda non-coerenti. Queste hanno origine principalmente dal fatto che, se si è campionato il segnale con un passo Δt e si sono acquisiti N campioni (che coprono quindi un intervallo complessivo $N\Delta t$), allora si potranno determinare le ampiezze (e le fasi) di contributi spettrali aventi frequenze pari a multipli interi di $(1/N\Delta t)$, fino ad una frequenza massima pari a $(1/2\Delta t)$. Poiché non è detto che queste frequenze corrispondano necessariamente a quelle presenti nel segnale reale, gli effettivi contributi spettrali saranno rappresentati in modo distorto: un fenomeno noto come "dispersione spettrale" (spectral

leakage). Sebbene esistano algoritmi matematici in grado di correggere la dispersione spettrale, tuttavia nei problemi reali si raggiungono solo di rado risultati pienamente soddisfacenti. Ulteriori difficoltà si manifestano qualora, in presenza di rumore, disturbi o artefatti, lo spettro calcolato per via numerica contenga un grande numero di contributi di modesta intensità e di frequenza relativamente alta. A causa dell'algoritmo impiegato, che esalta i contributi a frequenza più alta (dove i livelli di riferimento sono più bassi) e somma linearmente i contributi così pesati, l'indice calcolato con la formula (1) può risultare determinato più dai segnali spuri che dall'effettiva forma d'onda analizzata. Un'ulteriore fastidiosa conseguenza di queste difficoltà consiste inoltre nel fatto che il metodo standard applicato per questa via porta alla determinazione di un indice il cui valore dipende dalla risoluzione spettrale utilizzata nell'analisi armonica.

2.5 Le forme d'onda coerenti

Lo statement definisce "coerenti" le forme d'onda complesse "non-sinusoidali, con coerenza di fase", ovvero le forme d'onda originate dalla sovrapposizione di più componenti sinusoidali coerenti tra di loro (esempio in **Figura 2**). Con ciò si intende che le frequenze delle varie componenti sono stabili nel tempo e che tra di esse esistono rapporti di fase altrettanto costanti; un caso particolare di forma d'onda coerente è ovviamente la forma d'onda periodica.

Le forme d'onda coerenti sono quelle che hanno messo in difficolà l'approccio basato sul metodo standard. Lo statement ICNIRP del 2003 evidenzia infatti che, se si applica la formula (1) ad un campo elettrico e magnetico caratterizzato da forma d'onda coerente, "si va invariabilmente incontro ad una valutazione cautelativa dell'esposizione". Essa in molti casi potrà risultare eccessivamente cautelativa e comportare una irragionevole penalizzazione nell'uso della sorgente e/o imporre di disperdere risorse per l'applicazione di metodi di risanamento non realmente necessari. Lo statement propone quindi un nuovo approccio, il cosiddetto "metodo del picco ponderato" (traduzione dell'inglese weighted peak) per eseguire, anche sulle forme d'onda coerenti, delle valutazioni radioprotezionistiche appropriate, caratterizzate da un livello di cautela realmente fondato.

2.6 Il metodo del picco ponderato

Per comprendere il funzionamento del *metodo del picco ponderato*, occorre capire innanzitutto da dove ha origine l'eccesso di cautela prodotto dal *metodo standard* applicato alle forme d'onda *coerenti*. Il razionale fisico alla base della formula (1) punta alla protezione degli effetti di stimolazione del sistema nervoso, che sono effetti *istantanei*. A questo fine, le linee guida ICNIRP – sebbene siano formulate in termini di valore efficace dei campi – mirano di fatto a limitarne il valore istantaneo, e quindi il valore di picco.

Se riscriviamo la formula (1) in termini di valori di picco e facciamo per semplicità riferimento ad un intervallo di frequenza in cui i valori limite sono costanti², essa diviene:

$$\sum_{i=1}^{N} A_i^{pk} \le \sqrt{2}L \tag{2}$$

dove L è il valore limite costante e A_i^{pk} il valore di picco di ciascuna componente spettrale.

La formula (2) illustra bene il razionale alla base del *metodo standard*: poiché le componenti spettrali che costituiscono una forma d'onda *non-coerente* sono tra loro indipendenti per definizione, non si può escludere che si realizzi la condizione in cui esse raggiungono il valore picco tutte nello stesso istante: in quell'istante, il valore del campo è effettivamente uguale alla somma

² In tutte le linee guida ICNIRP, i valori limite per la prevenzione degli effetti di stimolazione nervosa sono costanti almeno nell'intervallo compreso tra 3 kHz e 10 MHz.

dei valori di picco delle singole componenti spettrali e quindi è giusto imporre che tale somma sia inferiore al valore limite (riportato anch'esso a valore di picco). Nel caso in cui si abbia invece a che fare con una forma d'onda *coerente*, la condizione di coincidenza dei valori di picco delle varie componenti spettrali è piuttosto rara e quindi imporre una limitazione basata su di essa è inutilmente penalizzante.

Il metodo del picco ponderato permette di superare questa difficoltà, grazie ad un approccio che, oltre a "pesare" le ampiezze delle componenti spettrali in ragione dei valori limite alle rispettive frequenze, tiene contemporaneamente conto anche delle relazioni di fase esistenti tra di esse. L'aspetto interessante è che esso, oltre a funzionare in modo convincente con le forme d'onda coerenti fornisce, quando viene applicato alle forme d'onda non-coerenti, risultati in linea di principio compatibili col metodo standard, almeno per segnali di durata sufficientemente lunga. In definitiva, come sarà mostrato con gli esempi (capitolo 4), la valutazione basata sul metodo del picco ponderato appare in grado di offrire un adeguato livello di protezione con qualsiasi tipologia di forma d'onda complessa.

Nello *statement* del 2003 l'ICNIRP sembra proporre il *metodo del picco ponderato* come approccio di elezione con cui trattare qualsiasi tipo di forma d'onda complessa a bassa frequenza, purché di contenuto spettrale limitato entro i 100 kHz. Questa indicazione è stata ripresa in modo palese (ed opportunamente generalizzata estendendo a 10 MHz il limite di frequenza) nelle nuove linee guida per le sole basse frequenze, che l'ICNIRP ha pubblicato alla fine del 2010 [7].

3. Indice del picco ponderato e sua determinazione

Così come il *metodo standard*, anche il *metodo del picco ponderato* conduce alla determinazione di un **indice** (che indicheremo col simbolo I_{WP}), il cui valore deve restare al di sotto dell'unità (o del 100%, se espresso in percentuale) per garantire il rispetto dei limiti. Per determinare questo indice sono a disposizione tre approcci: nel dominio della frequenza, in *hardware*, via *software* nel dominio del tempo.

3.1 Approccio nel dominio della frequenza

Nello statement ICNIRP del 2003, il metodo del picco ponderato viene introdotto con una definizione operativa funzionante nel dominio della frequenza. In questa sede non verranno discusse in dettaglio le motivazioni alla base dell'approccio proposto; si osserva però che queste comprendono sia aspetti di tipo biofisico (che si rifanno principalmente ai lavori di Kari Jokela [8,9]), sia l'intenzione di proporre una metodica realizzabile con soluzioni relativamente semplici. Per la sua applicazione, occorre disporre non solo delle ampiezze efficaci A_i delle componenti spettrali del campo rilevato, ma anche delle rispettive fasi ϑ_i rispetto ad un riferimento arbitrario. Si devono poi ricombinare le varie componenti spettrali del segnale considerato, dopo averne pesato le ampiezze in funzione del valore limite $L(f_i)$ preso a riferimento e averne aumentato le fasi di un opportuno termine (dipendente dalla frequenza) $\varphi(f_i)$; il valore assoluto massimo della funzione così ottenuta costituisce l'indice cercato:

$$I_{WP} = Max \left| \sum_{i=1}^{N} \frac{A_i}{L(f_i)} \cos[2\pi f_i t + v_i^2 + \varphi(f_i)] \right| \le 1$$
(3)

Il termine aggiuntivo $\varphi(f_i)$ rappresenta lo sfasamento che verrebbe introdotto alla frequenza f_i da una catena di filtri analogici RC del primo ordine progettata per fornire una risposta di ampiezza in frequenza il più possibile uguale all'inverso del limite L(f).

Per calcolare l'indice I_{WP} secondo la formula (3), occorre quindi determinare lo spettro del campo in ampiezza (efficace) e fase: questo può essere fatto agevolmente, per esempio, mediante

il campionamento della forma d'onda del campo stesso e la sua successiva analisi spettrale per via numerica. Sebbene questa metodica sia di facile comprensione e di semplice attuazione, essa tuttavia risente delle difficoltà legate all'analisi spettrale per via numerica a cui si accennava anche a proposito dell'applicazione del *metodo standard* (cfr. paragrafo 2.4).

3.2 Approccio hardware

L'introduzione nella formula (3) del termine di sfasamento aggiuntivo $\varphi(f_i)$ può generare perplessità. A parte un parziale fondamento biofisico, la sua motivazione di fondo è comunque soprattutto di tipo pratico-applicativo, come risulta dalle argomentazioni contenute nell'Appendice delle linee guida ICNIRP del 2010 [7]. La definizione introdotta dall'ICNIRP con la formula (3) permette infatti di implementare il metodo del picco ponderato per mezzo di una soluzione hardware concettualmente semplice e poco costosa. È sufficiente realizzare una catena di filtri analogici RC del primo ordine la cui risposta di ampiezza in frequenza si avvicini il più possibile (l'ICNIRP accetta uno scarto massimo di 3 dB) all'inverso del limite L(f) che si vuole verificare e quindi filtrare con essa il segnale fornito da una sonda di campo a risposta piatta; questa catena apporterà a ciascuna componente spettrale del segnale elaborato uno sfasamento variabile con la frequenza uguale, per definizione, proprio allo sfasamento aggiuntivo $\varphi(f)$ richiesto dalle linee guida ICNIRP. Questo approccio è impiegato in alcune importanti proposte commerciali, come ad esempio (per quanto è possibile sapere), nella sonda ELT-400 (Narda Safety Test Solutions). La sua principale limitazione risiede nel fatto che la verifica di ogni specifica normativa richiede la predisposizione di una catena di filtri analogici ad hoc; questo ne limita evidentemente la flessibilità e rende lo strumento inutilizzabile in caso di aggiornamento normativo.

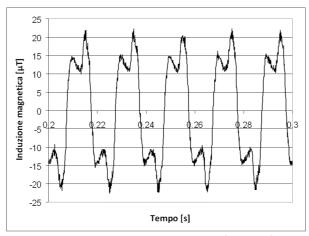
3.3 Approccio software nel dominio del tempo

L'approccio probabilmente più flessibile con cui applicare il *metodo del picco ponderato* è per via *software*, operando nel dominio del tempo. Utilizzando infatti tecniche consolidate di elaborazione numerica dei segnali, è possibile realizzare una procedura che riproduca il comportamento della prevista catena di filtri analogici, lavorando direttamente sul segnale prodotto da una sonda di campo, opportunamente campionato e digitalizzato. Anche questo approccio è ampiamente sfruttato nella strumentazione proposta commercialmente, come per esempio nella sonda PMM EHP-50E (Narda Safety Test Solutions).

4. Esempi di situazioni applicative

In questa sezione verrà mostrata l'applicazione dei diversi metodi ed approcci sopra discussi ad alcuni problemi reali di valutazione dell'esposizione umana ai campi elettromagnetici di frequenza bassa e intermedia con forma d'onda complessa. Lo scopo è dimostrare come il metodo del picco ponderato rappresenti la scelta più ragionevole ed equilibrata nella totalità dei casi e come l'approccio basato su una procedura software nel dominio del tempo sia la metodica più efficace per la sua determinazione.

4.1 Forme d'onda coerenti


4.1.1 Sbattitore ad immersione

Molti piccoli elettrodomestici emettono campi con frequenza fondamentale pari a 50 Hz, alla quale si aggiungono numerose armoniche, spesso causate della presenza di un motore che distorce la sinusoide di alimentazione.

Le problematiche inerenti alla valutazione dell'esposizione della popolazione ai campi generati da questa tipologia di sorgenti sono diffusamente presentate in [10]: da questa pubblicazione è tratto anche l'esempio che segue. Si tratta di un piccolo sbattitore a immersione,

che emette un campo d'induzione magnetica con la forma d'onda di **Figura 3**, caratterizzata da una frequenza fondamentale di 50 Hz e dalla presenza di una apprezzabile distorsione armonica.

Il valore di picco del campo è pari a 23.7 μ T, mentre il valore efficace vale circa 13.9 μ T. Il livello di riferimento ICNIRP-2010 per la popolazione alla frequenza di 50 Hz è pari a 200 μ T; questo, come è noto, deve essere inteso come valore efficace: il corrispondente valore di picco si ottiene moltiplicando quest'ultimo per la radice di 2 e vale quindi circa 283 μ T. Se si fa il rapporto tra il valore efficace del campo ed il limite ICNIRP, si ottiene un "indice del valore efficace" pari a circa 0.070; analogamente, se si rapporta il valore di picco del campo al limite ICNIRP riportato anch'esso a valore di picco, si ottiene un "indice del valore di picco" pari a circa 0.084. I due rapporti differiscono tra loro proprio perché la forma d'onda in esame si discosta sensibilmente da una sinusoide perfetta.

Figura 3: sbattitore ad immersione – forma d'onda dell'induzione magnetica.

Gli indici così calcolati trascurano il fatto che alle frequenze multiple di 50 Hz si devono applicare livelli di riferimento ICNIRP più bassi. Pertanto ci si aspetta che i metodi di valutazione che tengono conto di questo aspetto diano luogo ad indici di esposizione più alti. Poiché la forma d'onda è chiaramente di tipo *coerente* ci si aspetta inoltre – per quanto detto sopra (cfr. paragrafi 2.4-2.5-2.6) – che il *metodo standard* fornisca un indice di valore molto elevato e per di più dipendente dalla risoluzione in frequenza utilizzata nell'analisi spettrale.

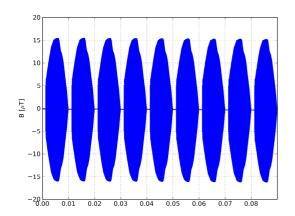
I _{MS} (ICNIRP 2010 popolazione generale)		
Risoluzione spettrale 50 Hz	Risoluzione spettrale 1Hz	
0.268	1.08	

Tabella 1: sbattitore ad immersione – indici I_{MS} determinati per due diverse risoluzioni spettrali.

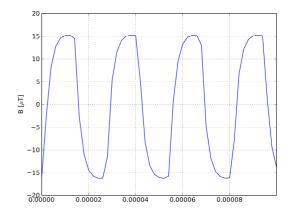
I _{WP} (ICNIRP 2010 popolazione generale)			
Dominio del tempo	Dominio della frequenza		
Dominio dei tempo	Risoluzione 50 Hz	Risoluzione 1 Hz	
0.111	0.105	0.113	

Tabella 2: sbattitore ad immersione – indici I_{WP} determinati nel dominio del tempo e della frequenza.

Ciò è evidenziato in **Tabella 1**, nella quale si riportano gli indici I_{MS} determinati a partire da due spettri ricavati per via numerica, rispettivamente con risoluzione pari a 50 Hz e 1 Hz. Si osservi


che non sempre la risoluzione spettrale può essere scelta in base alle caratteristiche oggettive del segnale considerato; in molti casi, infatti, le informazioni necessarie non sono note e la risoluzione viene imposta piuttosto da vincoli sul periodo di osservazione.

Al contrario, il *metodo del picco ponderato*, anche se applicato nel dominio della frequenza, fornisce risultati indipendenti dalla risoluzione spettrale ed equivalenti a quelli ottenuti nel dominio del tempo, come si vede in **Tabella 2**. Come era da attendersi, questi valori sono un po' maggiori di quelli calcolati semplicemente sul valore efficace (0.070) o sul valore di picco (0.084), ma largamente inferiori a quelli dell'indice associato al *metodo standard*.


4.1.2 Materassino riscaldante

In questo esempio viene preso in esame un materassino riscaldante per uso medicochirurgico, impiegato in sala operatoria per mantenere la temperatura corporea del paziente ai livelli desiderati. L'apparato è costituito da un generatore collegato ad un materassino di materiale sintetico, in cui è inserito un reticolo di fibre resistive che si scaldano se percorse da corrente.

L'esempio si riferisce all'induzione magnetica misurata con una sonda posta a pochi centimetri dalla superficie del materassino. In **Figura 4** è rappresentata la forma d'onda complessivamente acquisita. In **Figura 5** si riporta invece un'espansione della stessa forma d'onda, presa in corrispondenza del suo valore massimo. Osservando le figure, si può affermare che il campo è caratterizzato da un andamento periodico, con frequenza fondamentale di circa 37 kHz, a cui è sovrapporta una sinusoide a 50 Hz raddrizzata.

Figura 4: materassino riscaldante – forma d'onda dell'induzione magnetica.

Figura 5: materassino riscaldante – dettaglio della forma d'onda presso il valore massimo.

In **Tabella 3**, oltre ai principali parametri misurati, si riportano gli indici determinati a partire dal valore efficace e dal valore di picco, come spiegato nell'esempio precedente.

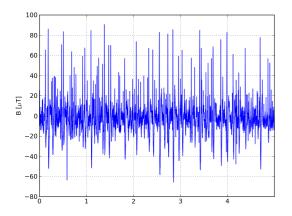
D	D	£	ICNIR	P 1998 lavo	ratori	ICNIR	P 2010 lavo	ratori
B _{eff} [μT]	_{picco} [μΤ]	'₀ [kHz]	$B_{LIM}(f_0)$ [μ T]	l _{eff}	I _{picco}	$B_{LIM}(f_0)$ [μ T]	l _{eff}	I _{picco}
9.47	16.3	37	30.7	0.31	0.38	100	0.095	0.12

Tabella 3: materassino riscaldante – riassunto dei parametri principali (nell'ordine: valore efficace e valore di picco del campo; frequenza fondamentale; valore di riferimento ICNIRP-1998 occupazionale e relativi indici calcolati sui valori "efficace" e "di picco"; grandezze analoghe riferite alle linee guida ICNIRP-2010).

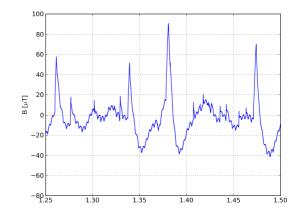
In **Tabella 4** sono riportati gli indici determinati applicando il *metodo standard* (con risoluzione spettrale 10 Hz e 100 Hz) e il *metodo del picco ponderato* (nel dominio del tempo) alla forma d'onda considerata. Come si può notare, in questo caso gli indici I_{WP} sono sostanzialmente

allineati con gli indici "di picco" di **Tabella 3**. Ciò accade perché lo spettro del segnale è contenuto in un intervallo di frequenze in cui i livelli di riferimento ICNIRP sono costanti. In tali condizioni, applicare il *metodo del picco ponderato* equivale a rapportare il valore di picco della forma d'onda con il livello di riferimento costante, riportato anch'esso a valore di picco.

	I	I _{WP}	
	Risoluzione spettrale 10 Hz Risoluzione spettrale 100 Hz		Dominio del tempo
ICNIRP 1998 lavoratori	2.56	7.29	0.36
ICNIRP 2010 lavoratori	0.79	2.24	0.11


Tabella 4: materassino riscaldante – indici I_{MS} e I_{WP} per varie linee guida e modalità di calcolo.

In **Tabella 4** si può osservare anche che gli indici I_{MS} risultano molto più grandi dei corrispondenti indici I_{WP} e che, come nell'esempio precedente, dipendono dalla risoluzione spettrale adottata.


4.2 Forme d'onda non-coerenti

4.2.1 Saldatrice ad arco (senza innesco)

Le misure d'induzione magnetica discusse in questo esempio sono state eseguite a circa 40 cm dal generatore di una saldatrice ad arco di tipo MIG. La forma d'onda complessivamente acquisita è rappresentata in **Figura 6**. Il valore di picco del campo nel periodo osservato è pari a circa 91 μ T; questo valore non ha, di fatto, un'effettiva utilità, poiché non esiste un valore limite con cui confrontarlo, dato che la forma d'onda non ha una frequenza caratteristica riconoscibile. L'inizio dell'acquisizione della forma d'onda è avvenuto a saldatura già avviata, cosicché l'innesco dell'arco non è stato osservato. In **Figura 7** è mostrato il dettaglio della forma d'onda nell'intorno del suo valore massimo.

Figura 6: saldatrice ad arco (senza innesco) – forma d'onda dell'induzione magnetica.

Figura 7: saldatrice ad arco (senza innesco) – dettaglio della forma d'onda presso il valore massimo.

In **Tabella 5** sono riportati gli indici determinati applicando sia il *metodo standard* (con risoluzione spettale 0.2 Hz), sia il *metodo del picco ponderato* (nel dominio del tempo); come si vede, i primi sono molto più grandi dei secondi.

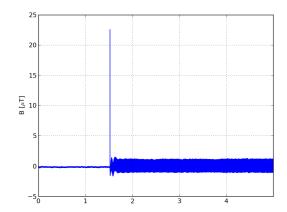
	I _{MS}	I _{WP}
	Risoluzione spettrale 0.2 Hz	Dominio del tempo
ICNIRP 1998 lavoratori	6.86	0.26
ICNIRP 2010 lavoratori	1.57	0.07

Tabella 5: saldatrice ad arco (senza innesco) – indici I_{MS} e I_{WP} .

Quest'ultimo è un fatto inatteso poiché in teoria i due metodi, quando vengono applicati a forme d'onda non-coerenti, dovrebbero tendere a fornire valori confrontabili. Il fatto che questo non accada nel caso in esame può essere imputato a due aspetti distinti. Da una parte abbiamo l'effetto del rumore e della dispersione spettrale, che tendono ad accrescere indebitamente l'indice I_{MS} , dall'altra è possibile che, durante il periodo osservato, non si sia mai verificata la condizione in cui tutti i contributi spettrali del segnale si sommano in I_{WP} con coincidenza di fase; questo fenomeno comporta una riduzione di quest'ultimo indice. Considerato però che l'esposizione ha per sua natura una durata limitata e un andamento intermittente, il metodo del picco ponderato fornisce un'indicazione più aderente ai dati effettivamente osservati e non presuppone l'avverarsi di una condizione il cui verificarsi può richiedere un tempo imprecisato o non avvenire affatto.

In altre parole, si può affermare (generalizzando e semplificando un po') che il *metodo standard* permette di stimare quale sarebbe il valore più alto raggiunto dall'indice associato all'insieme delle componenti spettrali (scorrelate tra di loro) che costituiscono una data forma d'onda *non-coerente*, se fosse possibile attendere un tempo lungo a piacere affinché si possa verificare il caso peggiore. Il *metodo del picco ponderato* determina invece, per lo stesso insieme di componenti spettrali, il valore massimo dell'indice associato al segmento temporale realmente osservato.

4.3 Forme d'onda transitorie


4.3.1 Saldatrice ad arco (con innesco)

In questo esempio sono discusse le misure d'induzione magnetica eseguite in corrispondenza della testa di un operatore addetto a una saldatrice ad arco di tipo TIG. La forma d'onda complessivamente acquisita è rappresentata in **Figura 8**. Il valore di picco del campo è pari a circa 23 μ T. In **Figura 9** è mostrato il dettaglio della forma d'onda presso il suo valore massimo, che ha luogo durante la fase d'innesco dell'arco.

	I _{MS}	I _{WP}
	Risoluzione spettrale 0.2 Hz	Dominio del tempo
ICNIRP 1998 lavoratori	1.07	0.26
ICNIRP 2010 lavoratori	0.27	0.05

Tabella 6: saldatrice ad arco (con innesco) – indici l_{MS} e l_{WP} .

In **Tabella 6** sono riportati gli indici determinati applicando sia il *metodo standard* (con risoluzione spettrale 0.2 Hz), sia il *metodo del picco ponderato* (nel dominio del tempo). Rispetto al caso precedente, gli indici I_{MS} sono meno distanti dai corrispondenti valori di I_{WP} . Ciò significa, evidentemente, che in corrispondenza del picco del campo, un certo numero di contributi spettrali significativi tende a sommarsi in fase ai fini della formazione dell'indice di esposizione.

25 20 15 0 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0031 +1.522

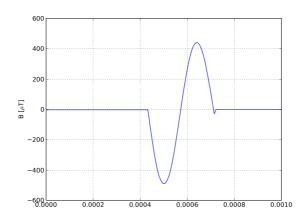
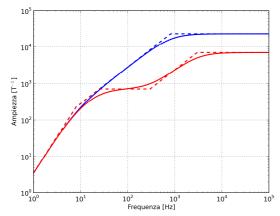

Figura 8: saldatrice ad arco (con innesco) – forma d'onda dell'induzione magnetica.

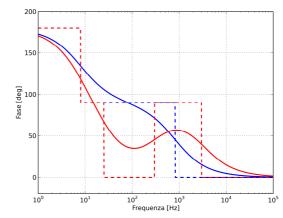
Figura 9: saldatrice ad arco (con innesco) – dettaglio della forma d'onda presso il valore massimo.

4.3.2 Stimolatore magnetico transcranico bifasico

Lo stimolatore magnetico transcranico è un dispositivo elettromedicale che fa uso di intensi impulsi di campo magnetico.

In **Figura 10** è rappresentata la forma d'onda dell'induzione magnetica misurata a circa 45 centimetri dall'applicatore, nella direzione del suo asse di simmetria. Come si può notare, questa forma d'onda ha un carattere impulsivo e non ripetitivo. Essa consiste di un evento di circa 280 microsecondi di durata, avente l'aspetto di un singolo periodo di sinusoide leggermente smorzata, con frequenza pari a circa 3570 Hz e valore di picco pari a circa 490 µT.




Figura 10: stimolatore magnetico transcranico bifasico – forma d'onda dell'induzione magnetica.

	Applicazione del metodo del burst
ICNIRP 1998 popolazione	55.6
ICNIRP 1998 lavoratori	11.3
ICNIRP 2010 popolazione	12.9
ICNIRP 2010 lavoratori	3.47

Tabella 7: stimolatore magnetico transcranico bifasico – indici di esposizione determinati secondo il *metodo del burst*.

Lo statement ICNIRP del 2003 [6] definisce un metodo specifico (che chiameremo "metodo del burst") da applicare ai segnali costituiti da un numero finito (almeno cinque) di cicli di sinusoide, separati da intervalli di silenzio relativamente lunghi. Esso consiste nel confrontare il picco della forma d'onda con i livelli di riferimento ICNIRP (riportati a valore di picco) determinati alla frequenza della sinusoide. Poiché qui è presente un solo ciclo di sinusoide, l'applicazione del metodo del burst è inappropriata ed ha quindi solo valore illustrativo. Gli indici calcolati secondo questo metodo sono riportati in **Tabella 7**.

Figura 11: risposta di ampiezza in frequenza delle funzioni peso che implementano l'inverso dei livelli di riferimento ICNIRP per i lavoratori.

Figura 12: risposta di fase in frequenza delle funzioni peso che implementano l'inverso dei livelli di riferimento ICNIRP per i lavoratori.

Nelle figure, le curve in azzurro si riferiscono alle linee guida ICNIRP del 1998, quelle in rosso alle linee guida del 2010. Le curve continue si riferiscono all'andamento *smussato*, quelle tratteggiate all'andamento *lineare a tratti* delle funzioni peso per mezzo delle quali si applica il *metodo del picco ponderato*.

Oltre che a una introduzione al *metodo del burst*, l'esempio corrente si presta anche a discutere un problema particolare, insito nell'applicazione del *metodo del picco ponderato* per via *software* nel dominio della frequenza (cfr. paragrafo 3.1). Si tratta dell'incertezza associata alla scelta se utilizzare una funzione-peso avente l'andamento "lineare a tratti" uguale all'inverso del livello di riferimento ICNIRP in funzione della frequenza, o se utilizzare invece l'andamento "smussato" corrispondente alla risposta in frequenza della catena di filtri analogici prevista dall'applicazione del metodo sia secondo l'approccio *hardware* (paragrafo 3.2), sia secondo l'approccio *software* nel dominio del tempo (paragrafo 3.3).

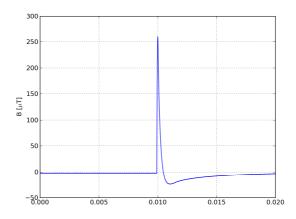
Nel primo caso (funzione-peso con andamento *lineare a tratti*), l'approccio nel dominio della frequenza produrrà una risposta più aderente al dettato normativo, nel secondo (funzione-peso con andamento *smussato*), esso fornirà risultati più coerenti con quelli che si ottengono con gli approcci che operano nel dominio del tempo. Gli andamenti delle funzioni peso in questione sono illustrati in **Figura 11** e **Figura 12**, relative rispettivamente alle ampiezze e alle fasi.

Gli indici I_{WP} determinati via software nel dominio del tempo e nel dominio della frequenza (con risoluzione spettrale ??? Hz), facendo riferimento sia all'andamento smussato, sia all'andamento lineare a tratti, sono riportati in **Tabella 8**.

	I _{WP}			
	Dominio del tempo	Dominio della frequenza		
	Dominio dei tempo	Andamento smussato	Andamento lineare a tratti	
ICNIRP 1998 popolazione	54.1	54.1	54.9	
ICNIRP 1998 lavoratori	11.0	11.0	11.2	
ICNIRP 2010 popolazione	9.41	9.49	10.4	
ICNIRP 2010 lavoratori	2.54	2.55	2.78	

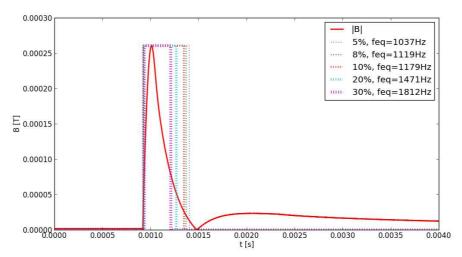
Tabella 8: stimolatore magnetico transcranico bifasico – indici I_{WP} determinati nel dominio del tempo e nel dominio della frequenza,

con risoluzione spettrale ??? Hz.


Il confronto tra **Tabella 7** e **Tabella 8** si presta alle seguenti osservazioni.

- Gli indici che si riferiscono alle linee guida ICNIRP del 1998 sono tutti ben allineati. Ciò
 è dovuto al fatto che lo spettro della forma d'onda considerata è tutto contenuto in un
 range di frequenze in cui i livelli di riferimento sono costanti (da 800-820 Hz in poi,
 Figura 11, linee azzurre).
- Gli indici relativi alle linee guida ICNIRP del 2010 sono molto meno omogenei. Ciò deve essere collegato al fatto che i livelli di riferimento definiti nelle linee guida ICNIRP del 2010 sono costanti solo per frequenze superiori a 3 kHz (Figura 11, linee rosse). L'indice determinato col *metodo del burst* fa riferimento al livello di riferimento preso alla frequenza f₀=3700 Hz. Tuttavia, lo spettro della forma d'onda ha anche componenti a frequenza più bassa: queste, quando si applica il *metodo del picco ponderato*, sono pesate in funzione di livelli di riferimento più alti, generando quindi indici di valore minore.
- Se si calcolano gli indici I_{WP} nel dominio della frequenza rifacendosi alla funzione-peso con andamento *lineare a tratti*, si ottengono valori che possono discostarsi sensibilmente da quelli determinati sia utilizzando lo stesso approccio, ma con la funzione-peso ad andamento *smussato*, sia impiegando l'approccio nel dominio del tempo; questo è maggiormente vero se la forme d'onda analizzata ha contributi significativi vicino agli angoli delle funzioni peso. Nel caso presentato, questo è ciò accade per gli indici che si rifanno alle linee guida del 2010.

4.3.3 Stimolatore tanscranico monofasico


In questo esempio si prende in considerazione un apparato per la stimolazione magnetica transcranica, che emette campi con forma d'onda monofasica, rappresentata in **Figura 13**.

Per eventi impulsivi singoli le linee guida ICNIRP del 1998 [5] e lo *statement* del 2003 [6] propongono un metodo di valutazione semplificato (che potremmo chiamare "metodo della frequenza equivalente"), che consiste nel confrontare il valore di picco dell'impulso con il livello di riferimento (riportato a valore di picco) preso alla frequenza pari all'inverso del doppio della durata dell'impulso stesso. Il metodo è proposto, in particolare, in associazione a impulsi di forma rettangolare, ma può essere interessante analizzarne il funzionamento anche con segnali transitori di forma diversa. Nel caso in questione, il campo ha una forma d'onda a doppia rampa con un ripido fronte di salita ed un fronte di discesa più lento. Questo andamento introduce una notevole indeterminazione nella durata dell'impulso (e quindi nel valore della frequenza a cui prendere il livello di riferimento ICNIRP), poiché mentre l'inizio dell'impulso è facilmente individuabile, la sua fine dipende dal livello soglia al di sotto del quale si considera esaurito l'impulso stesso.

Figura 13: stimolatore magnetico transcranico monofasico – forma d'onda dell'induzione magnetica.

Tutto ciò è illustrato in **Figura 14**, nella cui legenda si riportano le frequenze equivalenti determinate in funzione del livello di soglia (espresso in termini percentuali del valore di picco) a cui si considera esaurito l'impulso.

Figura 14: stimolatore magnetico transcranico monofasico – applicazione del *metodo della frequenza equivalente* in relazione ai livelli di riferimento definiti nelle linee guida ICNIRP del 2010: frequenza equivalente in funzione del valore di soglia al di sotto della quale si considera esaurito l'impulso.

Gli indici che ne derivano, riportati in **Tabella 9**, dipendono dalla soglia scelta. In particolare, gli indici relativi alle linee guida ICNIRP del 2010 risultano piuttosto variabili, perché la frequenza equivalente risulta più piccola di 3000 Hz (valore oltre il quale i livelli di riferimento sono costanti). Gli indici che si riferiscono alle linee guida del 1998 non dipendono invece dal livello di soglia scelto, in quanto le frequenze equivalenti sono tutte superiori a 800 Hz, limite oltre il quale i livelli di riferimento sono costanti.

Soglia rispetto	f _{eq}	ICNIRP 1998	ICNIRP 2010
al picco	[Hz]	lavoratori	lavoratori
5%	1037	6.01	0.64
8%	1119	6.01	0.69
10%	1179	6.01	0.73
20%	1471	6.01	0.90
30%	1812	6.01	1.11

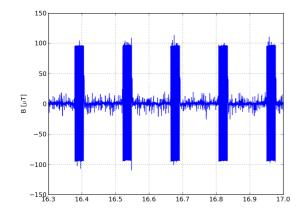
Tabella 9: stimolatore magnetico transcranico monofasico – indici di esposizione calcolati col *metodo della frequenza equivalente* al variare della soglia al di sotto della quale si considera esaurito l'impulso.

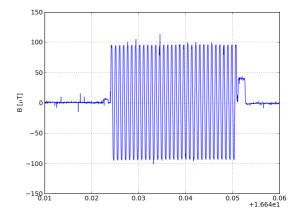
Gli indici I_{WP} determinati via *software* nel dominio del tempo e nel dominio della frequenza (con risoluzione spettrale 100 Hz), facendo riferimento sia all'andamento *smussato*, sia all'andamento *lineare a tratti*, sono riportati in **Tabella 10**.

	I _{WP}			
	Dominio del tempo	Dominio della frequenza		
	Dominio dei tempo	Andamento smussato	Andamento lineare a tratti	
ICNIRP 1998 popolazione	22.7	22.7	20.8	
ICNIRP 1998 lavoratori	4.59	4.60	4.23	
ICNIRP 2010 popolazione	3.60	3.63	3.23	
ICNIRP 2010 lavoratori	0.95	0.95	0.85	

Tabella 10: stimolatore magnetico transcranico monofasico – indici l_{WP} determinati nel dominio del tempo e nel dominio della frequenza, con risoluzione spettrale 100 Hz.

Confrontando gli indici in **Tabella 9** e quelli nelle righe dei lavoratori di **Tabella 10**, si nota come, nel caso ci si riferisca alle linee guida del 1998, il *metodo della frequenza equivalente* fornisca un indice costante e superiore al corrispondente I_{WP} . Invece, nel caso delle linee guida del 2010, l'intervallo degli indici restituiti dal *metodo della frequenza equivalente* è piuttosto ampio e comprende anche il valore che si ottiene usando il *metodo del picco ponderato*.


Come si può notare, gli indici che si riferiscono alle funzioni peso con andamento *smussato* risultano ben allineati con quelli calcolati nel dominio del tempo. Invece, gli indici relativi all'andamento *lineare a tratti* si discostano di circa il 10% dai precenti, per entrambe le versioni delle linee guida.


4.4 Forme d'onda particolari

4.4.1 Campo di gradiente in risonanza magnetica

In questo esempio si considera l'induzione magnetica emessa dalle bobine di gradiente di un apparato per la risonanza magnetica a 1.5 T, misurata con un sensore posto in prossimità dell'imboccatura del *bore* (esempio tratto da [11]).

La forma d'onda ha le caratteristiche di un *burst* sinusoidale della durata di circa 25 ms, con intervalli di circa 100 ms tra ciascun *burst* ed il successivo (**Figura 15** e **Figura 16**). Il campo ha un valore di picco pari a circa $114 \mu T$; la frequenza della sinusoide del *burst* è pari a circa 1160 Hz.

Figura 15: campo di gradiente in RM – forma d'onda dell'induzione magnetica.

Figura 16: campo di gradiente in RM – singolo *burst* sinusoidale.

Applicando il *metodo del burst*, già presentato nel caso dello stimolatore transcranico bifasico (paragrafo 4.3.2), si ottengono i risultati elencati in **Tabella 11**.

	ICNIRP 1998	ICNIRP 2010
Popolazione	12.9	1.17
Lavoratori	2.62	0.31

Tabella 11: campo di gradiente in RM – indici di esposizione determinati secondo il metodo del burst.

In **Tabella 12** si riportano sia gli indici I_{MS} relativi al *metodo standard* (con risoluzione spettrale 0.05 Hz), sia gli indici I_{WP} determinati applicando il *metodo del picco ponderato* nel dominio del tempo.

	I _N	ns .	I _V	VP .
	Risoluzione spettrale 0.05 Hz		Dominio d	del tempo
	ICNIRP 1998 ICNIRP 2010		ICNIRP 1998	ICNIRP 2010
Popolazione	212	39.5	12.0	1.57
Lavoratori	43.0	10.6	2.44	0.42

Tabella 12: campo di gradiente in RM – indici I_{MS} e I_{WP} .

Confrontando la **Tabella 11** e la **Tabella 12** si nota che il *metodo del burst* conduce a determinare indici ben allineati con i corrispondenti indici I_{WP} . Ciò è vero in particolare per i valori che si riferiscono alle linee guida ICNIRP del 1998 e un po' meno per quelli che fanno capo alle linee guida del 2010. In generale, queste due metodiche tendono ad essere equivalenti se la frequenza della sinusoide del *burst* è compresa in un intervallo di frequenze in cui i livelli di riferimento ICNIRP sono costanti. Nel caso in esame, ciò accade per i livelli di riferimento del 1998 (costanti oltre 800/820 Hz), ma non per quelli del 2010 (costanti oltre 3 kHz).

5. Considerazioni conclusive

Attraverso una carrellata di esempi riguardanti tipologie di forme d'onda molto diverse tra loro, abbiamo potuto osservare e discutere le differenti caratteristiche di alcuni indici di esposizione, tra cui quelli relativi al *metodo standard* e al *metodo del picco ponderato* introdotti nella prima parte di questa nota applicativa. Se ne traggono ora alcune considerazioni conclusive.

Come si era anticipato, il *metodo standard* dà luogo ad indici che possono essere molto cautelativi rispetto a quelli forniti dagli altri metodi presi in considerazione. Inoltre, il valore

dell'indice dipende da alcuni parametri, come la risoluzione spettrale, che devono essere fissati in funzione della particolare forma d'onda osservata. La scelta di una risoluzione insufficiente può portare a trascurare componenti spettrali significative e causare quindi risultati errati, mentre risoluzioni elevate portano a valutazioni estremamente cautelative.

Il metodo del burst ed il metodo della frequenza equivalente (per i segnali a impulso singolo) hanno il limite di riferirsi a specifiche tipologie di forma d'onda e di richiedere un'analisi caso per caso per la determinazione del livello di riferimento con il quale confrontarsi. Inoltre il metodo della frequenza equivalente non sempre risulta di facile applicazione ed il metodo del burst, anche se applicato propriamente, dà risultati coerenti con il metodo del picco ponderato solo in condizioni particolarmente fortunate.

Il metodo del picco ponderato ha il grande pregio di poter essere applicato a tutte le tipologie di forme d'onda considerate, senza la necessità di scegliere i parametri della valutazione in funzione delle caratteristiche del segnale. Il metodo può essere implementato sia nel dominio del tempo, sia nel dominio della frequenza: i risultati che si ottengono sono equivalenti, ma le problematiche legate all'implementazione sono diverse. L'implementazione nel dominio della frequenza è in generale più laboriosa, in quanto richiede la determinazione di uno spettro in modulo e fase e la successiva trasformazione dello spettro elaborato in una nuova forma d'onda nel dominio del tempo, di cui è necessario determinare il massimo. L'implementazione nel dominio del tempo invece è meno problematica; essa consiste sostanzialmente nella realizzazione di una opportuna catena di filtri numerici e si presta anche alla realizzazione di metodiche che funzionano in tempo reale.

Una difficoltà col $metodo \ del \ picco \ ponderato$ può nascere nel caso delle forme d'onda non-coerenti, in cui non è sempre possibile stabilire a priori quanto tempo sia necessario aspettare affinché si verifichi la condizione di coincidenza di fase tra le componenti spettrali del segnale, che dà luogo al massimo valore dell'indice stesso. D'altra parte, non è detto che questa debba necessariamente verificarsi, se l'esposizione ha una durata breve. In ogni caso però, è impossibile stabilire quanto l'indice l_{WP} possa risultare rappresentativo, se non si ha la garanzia di aver considerato la condizione più sfavorevole tra tutte quelle possibili.

6. Bibliografia

- Decreto del Presidente del Consiglio dei Ministri 8 luglio 2003: "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti". Gazzetta Ufficiale della Repubblica Italiana N.200 del 29 agosto 2003.
- 2. Raccomandazione 1999/519/CE del Consiglio europeo del 12 luglio 1999 relativa alla limitazione dell'esposizione della popolazione ai campi elettromagnetici da 0 Hz a 300 GHz. 1999/519/CE 30.7.1999 Gazzetta ufficiale delle Comunità europee L 199/59.
- 3. Direttiva 2004/40/CE del Parlamento Europeo e del Consiglio del 29 aprile 2004 sulle prescrizioni minime di sicurezza e di salute relative all'esposizione dei lavoratori ai rischi derivanti dagli agenti fisici (campi elettromagnetici). 2004/40/CE 24.5.2004 Gazzetta ufficiale dell'Unione europea L 184/1.
- 4. IRPA-INIRC: "Guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency range from 100 kHz to 300 GHz". Health Physics, Vol.54, N.1, January 1988, pp.115-123.
- 5. ICNIRP: "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)". Health Physics, Vol.74, N.4, April 1998, pp.494-522.
- 6. ICNIRP: "Guidance on determining compliance of exposure to pulsed and complex non-sinusoidal waveforms below 100 kHz with ICNIRP guidelines". Health Physics, Vol.84, N.3, March 2003, pp.383-387.
- 7. ICNIRP: "Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)". Health Physics, Vol.99, N.6, December 2010, pp.818-836.

- 8. K.Jokela: "Electrophysiological considerations relevant to the limiting of pulsed electric and magnetic field". Health Physics, Vol.72, N.3, March 1997, pp. 408-417.
- 9. K.Jokela: "Restricting exposure to pulsed and broadband magnetic fields". Health Physics, Vol.79, N.4, October 2000, pp. 373-388.
- D.Andreuccetti, S.Priori e N.Zoppetti: "Esposizione della popolazione a sorgenti ELF con forma d'onda complessa: valutazione del campo magnetico e della densità di corrente indotta". Collana IFAC-CNR Technical, Scientific And Research Reports (ISSN 2035-5831), Vol.2, N.65-7 (Report CNR-IFAC-TR-04/010), aprile 2010.
- 11. D.Andreuccetti e N.Zoppetti: "Utilizzo di tecniche di dosimetria numerica per la valutazione dell'esposizione a campi elettromagnetici degli operatori sanitari operanti su apparati di risonanza magnetica (inclusa la pratica interventistica) nel quadro delle disposizioni della direttiva 2004/40/CE". Collana IFAC-CNR Technical, Scientific And Research Reports (ISSN 2035-5831), Vol.3, N.66-1 (Report CNR-IFAC-TR-11-1/010), novembre 2010.